Exercise 16

In Exercises 1-26, solve the following Volterra integral equations by using the Adomian decomposition method:

$$
u(x)=1-2 \int_{0}^{x} t u(t) d t
$$

Solution

Assume that $u(x)$ can be decomposed into an infinite number of components.

$$
u(x)=\sum_{n=0}^{\infty} u_{n}(x)
$$

Substitute this series into the integral equation.

$$
\begin{aligned}
\sum_{n=0}^{\infty} u_{n}(x) & =1-2 \int_{0}^{x} t \sum_{n=0}^{\infty} u_{n}(t) d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots & =1-2 \int_{0}^{x} t\left[u_{0}(t)+u_{1}(t)+\cdots\right] d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots & =\underbrace{1}_{u_{0}(x)}+\underbrace{\int_{0}^{x}(-2 t) u_{0}(t) d t}_{u_{1}(x)}+\underbrace{\int_{0}^{x}(-2 t) u_{1}(t) d t}_{u_{2}(x)}+\cdots
\end{aligned}
$$

If we set $u_{0}(x)$ equal to the function outside the integral, then the rest of the components can be deduced in a recursive manner. After enough terms are written, a pattern can be noticed, allowing us to write a general formula for $u_{n}(x)$.

$$
\begin{aligned}
u_{0}(x) & =1 \\
u_{1}(x) & =\int_{0}^{x}(-2 t) u_{0}(t) d t=2(-1) \int_{0}^{x} t(1) d t=2(-1) \frac{x^{2}}{2} \\
u_{2}(x) & =\int_{0}^{x}(-2 t) u_{1}(t) d t=2^{2}(-1)^{2} \int_{0}^{x} t\left(\frac{t^{2}}{2}\right) d t=2^{2}(-1)^{2} \frac{x^{4}}{4 \cdot 2} \\
u_{3}(x) & =\int_{0}^{x}(-2 t) u_{2}(t) d t=2^{3}(-1)^{3} \int_{0}^{x} t\left(\frac{t^{4}}{4 \cdot 2}\right) d t=2^{3}(-1)^{3} \frac{x^{6}}{6 \cdot 4 \cdot 2} \\
& \vdots \\
u_{n}(x) & =\int_{0}^{x}(-2 t) u_{n-1}(t) d t=2^{n}(-1)^{n} \frac{x^{2 n}}{(2 n)!!}=2^{n}(-1)^{n} \frac{x^{2 n}}{2^{n} n!}=(-1)^{n} \frac{x^{2 n}}{n!}=\frac{(-1)^{n}\left(x^{2}\right)^{n}}{n!}=\frac{\left(-x^{2}\right)^{n}}{n!}
\end{aligned}
$$

Therefore,

$$
u(x)=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=e^{-x^{2}}
$$

